
1. 

LJIX 531.36 

STABILITY AND STABILIZATION OF PERIODIC MOTIONS 

OF AUTONOMOUS SYSTEMS 

PMM Vol. 41, NP 4, 1977, pp. 744 - 749 

G. N. MIL’SHTEIN 
(Sverdlovsk) 

(Received March 1, 1976) 

A criterion of orbital exponential stability of periodic motions of autonomous 
systems is obtained. The criterion is based on the method of Liapunov func - 

tions and is used together with the theory of optimal control to derive a method 
of stabilization of orbits. 

Let us consider an autonomous system of differential equations (where I and 
f are n - vectors) 

ax I at = f (x) (1.1) 

Let x = E (t) be a 2’ - periodic solution of (1.1) different from the point of rest and 
Y the trajectory of this solution. We shall assume that the components of the vector f 
are sufficiently smooth functions in some neighborhood of the trajectory Y. For any 
point x sufficiently near to the trajectory y, we can find a unique quantity 6 (x) 
such, that 0 < 0 (5) < T, .t (0 (x)) is the point on the trajectory y nearest to x, and 

the vector x - E (0 (x)) is orthogonal to the vector f (5 (0 (x))). 

Definition. A periodic solution 5 (t) of the system (1.1) shall be called expo- 
nentially orbitally stable ( EO - stable) if 6 > 0, a > 0 and K > 0 exist such that 

I x (t) - E (0 (x (9)) I < Ke-a(‘-‘“) I x0 - E (0 (x0)) I (1.2) 

as soon as 1 z. - E (0 (x0)) 1 < 6. In the expression (1.2) x (t) denotes a solution of 
(1.1) emerging from the point x0 at the initial instant of time to . 

The sufficient conditions of the EO stability are related to the Andronov - Vitt 
theorem [l, 21 and its analogs [3 ,4], and go back to Liapunov [S]. These conditions 

consist of the fact that the variational equations 

dY 
-=F(t)y, dt F (t) = I $ (t (9, ; (1.3) 

of the system (1.1) have, for the periodic solution E (t) , a single simple zero charac - 
teristic index, and all remaining indices have negative real parts. 

A theorem given in [S] asserts that these conditions are also necessary for the EO 
stability of the periodic solution E (t) of (1.1). The present paper’ gives a criterion of 
EO stability based on the method of Liapunov functions. Use of this criterion enables 
us to solve the problem of stabilization of periodic motion E (t) of the system (1.1). 

1. Lemma. If u (x) is a sufficiently smooth function in the neighborhood of the 
trajectory?, u > 0 and v (5 (t)) = 0, 0 < T < T, then 

n (x) = (x - E (r))* 1/ (z) (x - E (d) + 0 (I x - E (7) 13) CL 1) 

762 



Stability and stabilization of periodic motions 763 

v Wf (E (.t)) = 0 
?I 

c a”j 
axi i (xl = R (2) = (x - E CT))* (I;* (z) v (z) + 

i=l 

(2.2) 

(2.3) 

v (z) F (7) + V’ (T)) (x - 5 @)I + 0 (I x - E 6) I31 

( v (z) = + 
i 
& (4 WI I) 

Here v (7) is a 2’ - periodic matrix and the ratios of the quantities 0 (I 3 - % (z) 13) in 
(2.1) and (2.3) to I I - E (~1 I3 are bounded uniformly in 7 for small I x - E (T) I. 

Proof. At the point of the curve y the function u (5) attains a minimum, there- 
fore 

dv / d.zi (% (7)) = 0, i = 1, . . ., n, 0 < r < T (2.4) 

Using (2.4) and the Taylor formula to represent v (5) in the neighborhood of the point 
% (t), we obtain (2.1). 

Let us compute the i -th coordinate of the vector V (Qf (E (7)) 

where the last expression represents, by virtue of (1.1) , the total derivative of au / axi,. 
From (2.4) and (2.5) we obtain (2.2). 

Next we prove the formula (2.3). We expand the function R (5) into a Taylor se- 
ries at the point % (7) . This yields 

n t3R 
R (x) = R (E (.t)) + c x (4 W) (xi - Ei (z)) + (2.6) 

i=l 
z 

n 

1 
2 c * (E (?)I (“i - Fi (‘1) (“j - tj (‘)) + O (1 x -E tz) I”) 

i,j=l ’ ’ 

We have (see (2.4)) R (E (t)) = 0. Further we have 

k3R n -= 
‘Ti c k=l 

““=&$(+)ik+&?$i-&+ axiaxj 

II 

c 
k=l 

(2.7) 

(2.8) 

By virtue of (2.4) and (2.2). aR (5 (T)) / azi = 0. Further, when 5 = % (T) , the first 
sum in the right-hand side of (2.8) is equal, by virtue of (1.1)) to the derivative of 
the function a% / axiazj with respect to r , along the periodic solution z = % (z) . 
Therefore the sum is equal to the element of the i - throw and j -th column of the 

matrix 1/” (t). The last sum in (2.8) vanishes when I = % (7) by virtue of (2.4). AS 
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the result we obtain 

and this yields (‘2.3). 
The uniform boundedness of the ratio mentioned in the lemma follows from the assumed 

smoothness, and this proves the lemma. 

Let us give a graphical interpretation of the lemma. If k is a two - dimensional 
vector e the graph of the Liapunov function u with the lemma is concerned, represents 

an annular groove the base of which is the orbit x = E (t). Figure 1 depicts a section of 
this groove. A graph of the function (5 - E (z))*v (3 (Z - E (x)), is also drawn through 
the point M lying on the orbit. The function gives the corresponding approximation to 

the function v (2) in ‘the neighborhood of the point M (Er (T), Es (4) and is a parabolic 

cylinder, This illustrates clearly 

(2.2). 

the degeneracy of the matrix V (7) and the relation 

Let us denote by Pf the matrix corresponding 
to the projection operator acting on the subspace 

orthogonal to the vector f # 0; Pf = E - I f I-W* 
and E is a unit matrix, We shall call the quadra- 

tic form s*As and the symmetric matrix A f’f- 

positive definite (Pf - nonnegative definite) if 
for any vector x # 0 or~ogonal to the vector f 
the inequality ~*Az > 0 (x*Az >, 0) holds. Fig, 1 

Theorem 1. For the EO stability of a T - periodic solution e (b) of the system 
(1.1) it is necessary and sufficient that for any T - periodic matrix C (z) and any T- pe- 
riodic nonnegative function u (2) such that 

T 

s 
a(z)fh>O FL% 

0 

and the matrix C (z) - 01 (+!Z is Pf(e(r))- nonnegative definite, a 2’ - periodic ,Pf(G,t?(f))- 

positive definite matrix V (z) exists such that (2.2) holds and 

IJ‘ (‘t) 4 F* (t)V (4 + v @)P 6) = -P&E&! (~)P~(~~~~~ (2.10) 

Proof. Sufficiency. Let us introduce the function u (z) = (s - E (6))* V (0) l 

(5 - % (6)). Here and henceforth 8 = B (2). It can be proved that “is {@D (E (r)) / 

a;t+)) = P (7). From the lemma follows 
7% 

dV 
-= 
dt c $y fj (x) = (z - 4 03)” w (0) (3 - E (0,) + 0 (I z - 4 (0) 13) (2.11) 

i=L 

(W (z) = V’ (r) i_ F’ (z)v (T) + V (a)F (z)) 

By virtue of (‘&lo), (2. II) and the fact that the vectors f (% (8)) and (5 - E (6)) are 
orthogonal, we have 

du / dt = - fz - E @))*C (6) (z - E (3)) + 0 ff 5 - E (0) I31 (2.12) 

Since the matrix V (0) is PfcEte)) - p ositive definite, we can find positive numbers m 
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and M such that 

Itz (z - E (0))* (s - E (0)) < (5 - g (0))* v (0) (r - E (0)) d 
M (x - f (St)* (5 - E (0)) 

Conditions of the theorem and (2.13) together yield the inequality 

(2.13) 

- (x - F (w* c 03 (2’ - 4 (0)) d - a (0) tx - 4 wP b - 5 (0)) G 
u (0) 

which, together with (2.12), yields the following inequality for sufficiently small 

t 5 - E (0) I : 
do f.8 03 

-J+-TV (2.14) 

The above inequality ensures, by virtue of (2.13)) that 1 z - E (e) 1 is small at all 
instants of time provided that 1 i,, - E (0 (.qJ) 1 is small. 

Using the fact that the solutions are continuous with respect to the initial parame- 
ters , the 2’ - periodicity of the function a (z) and the condition (2.9), we obtain for 

small I za - E (0 f+d) I 
WWF 

s 
a@(z(t)))dt>u,>O, r=O,Z, . . . ,(~:(O)=S~\ (2.15) 

rT 

Dividing both sides of (2.14) by V, integrating from 0 to t and taking into account 
(2.15), we obtain 

u (t) < Ku (O)e_=’ (2.16) 

where It: > 0 and a > 0 are some constants. Owing to (2.13)) the inequality (2.16) 
proves the EO stability of the solution 5 = 5 (t) of the system (1.1). 

Necessity. Let us consider the function 

co 

v (x) = s k (1) - f (0))* c (0) (z (t) - 4 (0)) dt (2.17) 

O (r (0) = x, 0 = 0 (5 (t))) 

where 2 (t) is the solution of (1.1). Function v (2) satisfies the conditions of the lemma. 

Clearly, V (0) is a Pf(z(.(s))- positive definite matrix for the function u (5) of (2.17). 

The formula (2.11) holds for u \z) . On the other hand, using (2.17) we find that 

au I dt = - (x - 5 vv)*c (0) (I - 5 63) 

Equating (2.11) with (2.18)) we obtain 

%isff W (r) Pfcecqt = - %E(z!tC @I PfKtTff 

But from (2.2) we have 
(V’ (z) + V WF (z)lf (g (T)) = 0 

(2.18) 

(2.19) 

and this, together with (2.2)) yields 

w (Wf(F&)) = w (-c) (2.20) 

Applying the conjugation operation to both sides of (2.20) we obtain another equation 
which, together with (2.19) and (2.20) , yield (2. lo), and this completes the proof 
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of Theorem 1. 

8. The problem of stabilization of the points of rest was studied by many authors 
[7,8]. Let us consider the problem of stabilization of the periodic motion of the system 

(1.1). We introduce a system with a control 

clx i dt = f (X) + b (6 (x))u (3.1) 

where 6 (r) is a T - periodic n - vector and u is a scalar control. We shall seek a con- 
trol u=U(Zr,..., x,,) from the condition of minimization of the functional 

cc 

J = 
s 

[(Z - 4 (e))* C (0, (5 - “, (0)) + B (0) u21 at, 0 = 8 (5) (3.2) 
0 

where C (r) satisfies the requirements of Theorem 1 and B (7) is a 7 - periodic positive 
function. 

The Bellman function V’ (x1, . . ., zn) of the problem (3.1). (3.2) satisfies the 
equation n 

nrin 
[C 

-&I (fi (5) + bi (6) I() + (5 - E (e))* C (0) (5 - 4 (6)) + B (0) u21 = 0 
i=l “’ 

(3.3) 
u 

Assuming that the function 17 is sufficiently smooth, we can confirm that it satisfies 
the conditions of the lemma. This leads to the relations (2.1) and (2.2) where 

~’ (7) == l/2 {a*V” (E (T)) / dzia”j}, 

Using (3.3) we obtain 

X0 = - &F (0) V (9, (5 - E (0)) + 0 (I 5 - E ((3) 12) (3.4) 

V’ (.c) + F* (T) V(z) + V (7) F (7) - 
(3.5) 

Theorem 2. Let PrcEc7,)_- positive definite T - periodic matrix V (r) satisfy 
(2.2) and (3.5). Then the Ti periodic motion z = 5 (t) of the system (3.1) with con- 
trol 

11 (2) = - & b* w v 03 (z - E ce)) (3.6) 

is EQ - stable. The value of the functional (3.2) under the control (3.6) is equal to 
v (z) + 0 (I z - 5 (6) I ? where v (z) = (Z - E (e))*V (8) (I - g (Cl)), and differs 

from its optimal value by 0 (1 z - E (6) 13). 

Proof. Equations in variations of the system (3.1) with control (3.6) have the 
following form for the periodic solution r = E (t) : 

dV 
‘=c(t)y= dt 

Replacing F in (2.10) by the matrix G and using (3.5), we find 

I/” W+ G* 0) V (@+ V W CT)=- Q(+)~C 6) PfcEtTjj - j&j= V (7) b(z) b* (z) v(r) (3.8) 

Equation (3.8) proves, by virtue of Theorem 1, the EO stability of the solution 

(3.7) 
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z = E (r) of (3.1) with the control (3.6). The rest of the theorem is proved with the 
help of the method given in [9]. Let us consider (3.2) and the functional 

Q1 n 

K=J+ \ ~$(fib9+bi(ew 
Oi=l ' 

Clearly, if the control u in the problem of minimizing the functional J is optimal, 
then it will also be optimal in the problem of minimizing K and vice versa. This 

follows from the equality K (a) = J (5) - u (2). The integrand Q (5, U) of the functio- 

nal K can be written with the help of the lemma in the form 

Q (5, n) = (5 - E (0))* IC (0) + J” (6) + F* (NV (9) -I- 
V (0)~ w (5 - E w + p (ew + 2b* 03 w b - E wu + 
0 (1 2 - z (0) 1 2)~ + 0 (I 5 - k (0) I 3) 

From (3.5) follows min, Q (.r, u) = 0 ( I 5 - E; (e) 1 3) 

and this yields for any control 

J @) = K (5) + V (5) a V (X) - 1 0 (1 5 - E (0) 1 3, i 

But under the control (3.6) J = v (?) + 0 (I 5 - e (6) I 3). This completes the proof 
of Theorem 2. 

4. Example. Let us consider the problem of stabilizing the motion Er = r cos t, 

i2 = -r sin t in the system 

=1 *_ - 521 4 l = -q+b(O)u (4.1) 

with the minimization of the functional 

J = j: ICI (e) b1 - cl (e))z + c2 (e) b2 - ~~ (e))2 + 6 (e) u2~ dt (4.2) 
0 

The relation (2.2) and (3.5) yield the following expressions for the elements of the 
matrix V (z): 

vrr -= 2h (r) COG t, vrs = vzr = --h (r) sin 22, vZZ = 2h (7) $in2 t 

where the 2n - periodic positive function h (T) satisfies the Riccati equation 

262(z) A’-- 1 

B (t) 
sinr zA2f 2 c1 (z) co92 t + + c2 (t) sina t = 0 (4.3) 

The function v (x1, x2) and control u (x1, x2), are nearly optimal at small I r/xl2 + xz2 
- r I and are, respectively, 

v (z,, x2) = 2h (e) (1/q + x22 - r)2 (4.4) 

(4.5) 

where the function 6 (z,, x2) can be obtained from the relations 

~0s e = vx.21 xiL 1 sin 0 = - v& 
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If, for example, b = p = 1, cl = 0, c2 = 1, then (4.3) yields h - li,. In this case 
the system (4.1) with control (4.5) assumes the form 

51 
*_ - 12, 52’ = -xi - (Xa - rx2 / 1/x1”+ x22) 

The solution x1 = r cos t, x2 = - r sin t of (4.6) is self - oscillatory. 

(4.6) 

Note. The sufficient criterion of stabilizability (Theorem 3) given in [lo] is 
incorrect. It turns out that the full controllability is insufficient to ensure the stabili - 

zability of the systems with arbitrary noise. The noise must have certain restrictions 
imposed on it . For example, the following result is valid: if the system (2.2) is fully 
controlled and a number a > 0 is found such that for any D>O the inequality 

k 

2=1 

holds, then the system (1.1) can be stabilized in the quadratic mean if (or = 0 (r = 

1, 2, . . . , m) . 

We note that the criterion formulated in Theorem 3 is not related to the basic content 

of [lo], and the discussion of the remaining material does not make use of this theorem. 
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